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Abstract 

A linearized theory is developed for minimum fuel guidance in the 

neighborhood of a minimum-fuel space trajectory. The thrust magnitude is 

unrestricted so that the thrust is applied impulsively on both the nominal trajec- 

tory and the neighboring optimal trajectories. The analysis allows for additional 

small midcourse impulses as well a s  for small changes in the magnitude, direc- 

tion, and timing of the nominal impulses. The fuel is minimized by determining 

the trajectory which requires the minimum total velocity change when summed 

over all the impulses. 

The analysis is deterministic and applies to arbitrary time-varying 

gravitational fields. Three separate time-open problems a re  treated; rendezvous , 

orbit transfer , and orbit transfer with tangential nominal impulses. 
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Introduction 

This is the second of a series of papers on minimum fuel guidance 

of high-thrust rockets. The first paper (Ref. 1) illustrated the general approach 

by treating the particular problem of guidance from a hyperbolic to a circular 

orbit. The succeeding papers are  intended to generalize this approach to more 

general classes of guidance problems. This generalization will be carried out 

in several stages. The present paper will  consider the general case of time- 

open impulsive guidance. Later papers will extend the analysis to finite thrust. 

There is a well-developed theory for minimum fuel impulsive guidance, 

e. g., Refs. 2, 3 and 4. However, these references consider only the case of 

an unpowered nominal trajectory. The nominal trajectory around which the 

analysis is linearized is a coasting arc. The present paper is intended to 

generalize these results to nominal trajectories containing one or more finite 

impulses. The analysis will consider three different problems. The first 

problem to be treated will be minimum fuel guidance for time-open rendezvous. 

The second problem will be time-open orbit transfer, and the third problem 

will be an important special case of the second, where one or more of the 

finite impulses is tangent to the velocity vector. 
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Mathematical Model 

The analysis of the present paper is linearized about a nominal 

trajectory containing one, or more, finite impulsive velocity changes. This 

nominal trajectory must be an optimal trajectory minimizing the sum of the 

absolute magnitude of its impulses for transfer between its terminal states. 

The problem considered is the deterministic problem of determining the 

minimum impulse transfer from a given state in a close neighborhood of the 

nominal state at  a given initial time to the terminal state with time open. The 

nominal trajectory may lie in a general time-varying gravitational field. The 

analysis is a first order analysis neglecting second order terms. It is analo- 

gous to the neighboring optimal guidance schemes developed for smooth 

optimization problems without corners. The problem is complicated by the 

possession of corners and the possibility of introducing additional impulses. 

However, the problem is simplified because it is a first order analysis. In 

general, the problem will be to guide the vehicle from a given initial state at  

a given initial time to a final time in the near vicinity of the nominal terminal 

time. For the orbit transfer problem the final time may be allowed to become 

arbitrarily large; and it may also be possible to extend the initial time arbi- 

trarily far backwards in time. 
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Analysis 

I. Time-Open Rendezvous 

The key concept in analyzing minimum-impulse guidance for time- 

open rendezvous is the concept of a noncritical direction. This concept was 

originally developed for use in interception problems rather than rendezvous 

(Refs. 2 and 5) but is also useful in analyzing rendezvous. Consider the case 

where the nominal trajectory has a single finite impulse which accomplishes 

rendezvous at  a nominal terminal time. If rendezvous were to be accomplished 

at a slightly earlier time 6t, then the point at which rendezvous is accomplished 

must be displaced by the negative product of the target velocity vector and the 

time change. 

6R = - v  6t  
T e t = t f  - 6 t  

This position is reached by the intercepter at  an earlier time than the nominal 

arrival time. If the trajectory of the intercepter were continued to the nominal 

arrival time, it would have the position given by Eq, (2) and shown on Fig. 1. 

- 
6fi I = - V T 6 t + V 1 6 t = -  A V 6 t  @ t = t f  

This indicates that, if the intercepter will  intercept a specified line in space 

at the nominal arrival time, then it will (to first order) also intercept the target 

at a somewhat earlier or later time. This specified line passes through the 

nominal arrival point and has the direction of the nominal finite impulse. This 

direction through the nominal arrival point is known as the noncritical direction 
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at the nominal arrival time. It represents the one permissible direction of 

position variation which will still lead to rendezvous. This noncritical direc- 

tion may also be propagated backward in time by use of the state transition 

matrix. It will then define a noncritical direction at any point along the nominal 

trajectory. 

In order to effect rendezvous, it is necessary to control the two 

components of position variation in the plane normal to the noncritical direc- 

tion. This plane is known a s  the critical plane. Once the terminal position 

of the target vehicle and the rendezvous vehicle has been matched by reducing 

the position deviations in the critical plane to zero, rendezvous is accomplished 

by a finite impulse which nulls the difference between the target and inter- 

cepter velocities. To first order, only one component of terminal impulse 

variation adds linearly to the cost; that in the direction of the nominal impulse. 

Any small deviations in the velocity vector normal to this direction may be 

cancelled by small rotations of the nominal terminal impulse. Such rotations 

only increase cost to second order and may be neglected in a first order 

analysis. 

The foregoing considerations indicate that only two components of 

position and one component of velocity at the nominal final time must be con- 

trolled for time-open rendezvous. This reduces the original 6-dimensional 

parameter space to a 3-dimensional parameter space. If there is only one 
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finite impulse, then the analysis for unpowered nominals in Refs. 2, 3 and 4 

may be applied without change to this 3-dimensional parameter space. That 

analysis indicates that the optimum solution has no more than three impulses. 

One of these impulses will represent a variation in the magnitude of the nominal 

impulse so that there are, at most, two midcourse impulses. 

The required position correction at  the nominal terminal time may 

be accomplished with a single midcourse impulse. If this corrective impulse 

occurs a t  a specified time, then the optimum direction of this impulse may 

easily be calculated. One component of the impulse will produce the position 

correction. This component will lie in the critical plane. There will also be 

a component of the midcourse impulse in the noncritical direction. This com- 

ponent will be used to reduce the magnitude of the large terminal impulse and 

will result in an overall saving in impulse magnitude and fuel, The total change 

in impulsive velocity is given by Eq. (3). 

alA-1 
nc a u  C 

u -  i n -  - a l a v l  C6V = u + u  
a uric C 

c nc 

The optimum magnitude of the velocity component in the noncritical direction 

may be found by differentiating Eq. (3), and solving for the stationary minimum 

point given by Eq, (4). 

* 
U nc 
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The total cost of the optimum correction at  a specified time is given by Eq. (5). 

In the particular case treated in Ref. 1, the midcourse correction 

should be made as  early as  possible and there will  be only one midcourse 

impulse for the minimum fuel solution. This behavior will be typical of most 

cases a s  the time approaches the terminal time, However, in other cases as  

many as two midcourse impulses will be required to minimize the fuel con- 

sumption. It is also possible that a single impulse a t  a time later than the 

time under consideration may be optimum. There are  both direct and indirect 

approaches to this optimization problem. The indirect method calculates the 

primer vector (Refs, 6 and 7) from the direction given by the optimum direction 

of a single midcourse impulse at the current time to the terminal impulse at  

the terminal time. If this vector is less than unity a t  all intermediate points, 

then the single correction wil l  be the absolute minimum fuel solution. 

The direct method is a constructive approach utilizing the convex 

hull of the reachable set of terminal states (Ref. 2). This reachable set is 

constructed in a parameter space defined by the change in the terminal impulse 

magnitude and by the two position components in the terminal critical plane. 

Each of these parameters is normalized by the magnitude of the midcourse 

velocity change. An optimum maneuver must lie on the convex hull of the 
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reachable sets in this space. The set of all impulse directions at  a given time 

will define an ellipsoid in the parameter space. Equations (4) and (5) will  define 

a generator of a cone which is tangent to the ellipsoid and whose apex is at  minus 

one on the velocity axis (see Fig. 2). If a single correction at  the earliest pos- 

sible time is optimal, then the cones for all stibsequent times wil l  lie inside the 

initial cone. If two midcourse corrections are required, then the convex hull of 

all the cones will have a plane as  one of its bounding surfaces. If a single cor- 

rection at  a later time is optimal, then one of the later cones will project through 

the cone corresponding to the initial time. The geometric construction for these 

cases may be reduced to a 2-dimensional construction by using the traces of the 

cone on the plane of the position variations. In exceptional cases where such 

traces do not produce closed figures, it may be necessary to use another plane 

that passes through the cones. 

If the nominal trajectory contains one or more large impulses before 

the final impulse, then all necessary corrections may be made by utilizing small 

variations in these impulses. It is only necessary to consider small variations 

of timing and direction of these impulses. Such variations allow control of one 

component of position and two components of velocity at  the time of the impulse. 

These three components may then be propagated to the terminal state by means 

of the state transition matrix. Except in exceptional cases it will be possible to 

control all three required components of the terminal state by this means. This 

control will (to first order) produce no increase in cost. This is shown by the 
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fact that the primer vector passing through the two impulses of the optimal 

nominal trajectory is stationary with respect to small variations in impulse 

timing and direction. 

11. Time-Open Orbit Transfer 

If the object of the mission is orbit transfer rather than rendezvous, 

the particular phasing of the vehicle in the final orbit is unspecified. This means 

that there will be a set of noncritical directions arising from all points on the 

target orbit in the vicinity of the nominal terminal time. This set of directions 

will to first order define a plane in which will lie the velocity vectors of both 

the target orbit and the transfer orbit at  the nominal terminal time. A l l  trajec- 

tories which are  close neighbors of the nominal trajectory and which touch this 

noncritical plane at  the nominal terminal time will also intersect the target 

trajectory a t  a time close to the nominal terminal time. For the orbit transfer 

problem it is only necessary to control the one component of terminal position 

in the critical direction which is normal to the noncritical plane. The parameter 

space which must be considered is only 2-dimensional, containing one position 

component and one velocity component. There will be at  most one midcourse 

impulse in addition to small variations in the terminal impulse. The optimum 

midcourse impulse may occur at  a time other than the earliest possible time. 

In fact, in some cases this single midcourse impulse should occur in the 

neighborhood of the terminal orbit rather than in the neighborhood of the transfer 
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orbit and at  a time later than the time of the nominal terminal impulse. The 

latter case is easily analyzed by considering the set of reachable states in the 

vicinity of the terminal orbit, a s  well as  in the vicinity of the transfer orbit. 

III. Time-Open Orbit Transfer with Tangential Impulses 

In many orbit transfer problems, such as  the well-known Hohmann 

transfer, the impulses are  applied tangent to the velocity vector. In such a case 

the noncritical plane of the preceding section becomes undefined and it is once 

again necessary to consider a 3-dimensional parameter space possessing two 

components of position variation. This case is similar to the case of time-open 

rendezvous and possesses a noncritical direction and a critical plane. A s  in the 

preceding section, it may be desirable to consider midcourse impulses in the 

terminal orbit as well as in the transfer orbit. It is possible to have a midcourse 

impulse before the major transfer impulse in the neighborhood of the transfer 

orbit, a s  well as  a post-terminal-time midcourse impulse in  the neighborhood 

of the nominal terminal orbit. If there are  one or more large impulses on the 

nominal trajectory before the terminal impulse, then variations in the timing 

and direction of these impulses may be used to control the trajectory. In the 

particular case of a Hohmann transfer, these variations will not be sufficient 

to control all out-of-plane deviations because the two impulses a re  located at 

singularities of the state transition matrix. In this case it will be necessary to 

utilize midcourse impulses in either the transfer orbit or one of the terminal 

orbits for controlling the out-of-plane component of the terminal position variation. 
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Conclusions 

(1) Minimum impulse time-open rendezvous in the neighborhood of 

an optimal nominal trajectory requires at  most two small midcourse impulses 

if the nominal trajectory possesses one large finite impulse. Two midcourse 

impulses may be required if either the nominal trajectory or the deviations 

from it are nonplanar. If both the trajectory and deviations are  planar, not 

more than one midcourse impulse will be required to realize minimum total 

impulse, 

(2) Minimum fuel, time-open orbit transfer in the near vicinity of an 

optimum nominal requires at  most one small midcourse impulse if the nominal 

trajectory contains at least one finite impulse which is not tangent to the velocity 

vector. If both the nominal trajectory and the small deviations from it lie in the 

same plane, there will be no small midcourse impulse. In the latter case, the 

first order minimum fuel solution will be a single impulse at  the intersection 

of the two orbits. 

(3) For both time-open rendezvous and orbit transfer with two or 

more finite impulses, no midcourse impulse will be required unless the finite 

impulses occur at singularities of the state transition matrix. 
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Fig. 1 Intercept Geometry 
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